ot e
NIXDORF
COMPUTER

Nixdorf 8870

Program Tuning

Edmon: 01.07. 85 Order No. 34698.00.4.93

introduction

System performance -

Hints on program structuring
Execution times of BASIC statements
Execution times of BASIC CALLS

= nt on data communication with code conversion

o
COMPUTER

Nixdorf 887¢

BASIC Program Tuning

Page @ -
P1.07.85

1

Modifications Sheest

appearance of the first edition. It should

ions are announced,

$1.¢7.1985

2d by the new sheet provided whenever further

b R 5
NIXDORF
SRS B

COMPUTER

Nixdorf B87¢ Page ¢ - 3

BASIC Program Tuning P1.p7.85

Errors/Suggestions for Improvement

Errors}suggestians for improvement

If you have noticed any errors while using this section
of the systems literature, or should you have suggestions
for the improvement of the module, please send your writ-
ten comments to the following address:

NIXDORF COMPUTER AG
Abt. ZS8T
Fiirstenallee 7
D-479¢ Paderborn

Nixdorf 887¢ Page @ - 5

BASIC Program Tuning PL.@7.85
Contents
Contents
1 INErGAUOETON e siweie e e s a s aEsEE T rTrEsE ey e 1 - 1
2 System performance00. e 2 - 1
2.1 Throughput and response time crsananan 2 - 2
2.2 System load through the BASIC lnterpreter asteweaas 2 e 13
3 Hints on program structuringc.«. covesessan 3= 1
3 a4 Execution times of BASIC statements ...seainsasnss 4 - 1
4.1 LET statementcue.es- R e g e Al ol T R |
4.2 Arithmetic U 1 SLRNTNE T T S
4.3 Definition of funcbtiongc.v... e rstessasnansas 4 - 4
4.4 Branch and loop statementscovae e T —— 4 - 5
4.5 IF statement @ oo e iy R R R R B 4 - 6
4.6 Input/output statements ...i.eesvevecnvnsnssns e Been B
4.6.1 PRINT statement S A e e e Vi e A= B
4,6,2 INPUT statement ..isesssassaasanesniarnsnss b R 4 - 12
4.7 File ACCESSES 4 ssstssansnssnsnsnnnns Vi e SRk el 4 - 13
4,.7.1 Record structures- B T — e e s s aaan 4 -~ 13
4,.7.2 Kecord locks weeeaeaeimsiasni R S R TR 4 - 14
4.7.3 READ/WRITE statements ..eseesensnannsnns SR 4 - 15
4.7.4 SEARCH statementisvsnasnansasannsse R R e e 4 - 18
4.7.5 OPEN/CLOSE statementscosccecases S 4 - 17
4.8 CHAIN/1INK statements ...:ssssacssasacsses creeeses 4 = 19
5 Execution times of BASIC CALLS e o R 5 - 1
5.1 OALl: ¥ e odss b e vl o L R e i 5 - 1
5.2 CALL 2 and CALL 3 ...ieicnccas A R e s Sl Beam 03
5.3 CRTT s ol e e N 5 - 2
5.4 CAEL: 21 apnd CALT: 22 o s e e sl AR R TR 5 - 3
Bih CA L B e P S R R e Ry 5 - 3
5.6 CALL 26 S R R o P e 5 - 4
5.7 CALL 6@ and CALL 61 s T e e s i amRR e B
5.8 CALL. 99 oo amssms s b asssasmeane s seses D o= 4
6 Hint on data communication with code conversion .. &6 - 1

NIXDORF

COMPUTER
Nixdorf 887¢ Page 1 - 1
BASIC Program Tuning @1.07.85

Introduction

Introduction

Unfortunately, the past has shown that BASIC application
programs have often been written without regard to the
speed at which they run and the system lcad that they

Cause.

The result is that the system installed at the user's prem-
ises does not achieve the necessary performance and easily
hecomes a problem. This weak performance iz particularly
noticeable when inefficient programs are in progress at
several ports.

To remedy this situation, this document should be given to
application programmers before they start programming so
that they can use it for reference in their work.

Acceptance testing of software products should not only
concentrate on program functionality in future but should
also take throughput aspects into account.

This document deals primarily with tuning of application
programs. These tuning measures must involve:

- Program flow {organization of program and file system)

- Reduction of program run-time by efficient programming

- Use of system features that increase performance

- Utilization of the simultaneity in the gystem

Chapter 2 of this document deals with system performance,
throughput and load in general. Chapter 3 gives hints on
program structuring. Chapters 4 and 5 give the timing of

certain BASIC statements and CALLs which are used as a
basis for hints on efficient programming.

R

MIXDORF
e
COMPUTER

Nixdorf 8879 Page 2 - 1

BASIC Program Tuning @L.@47.85

System Performance

System performance

Just like all other computers, the Nixdorf 8879 consists of
a number of hardware and software components whose inter-
play under program control constitutes the actual perfor-
mance of the system. If any major system component becomes
a bottleneck (high workload), the performance of the entire
system is impaired although the other parts of the system
are capable of greater performance (i.e. they are not
working at full capacity). The distribution of the workload
iz very uneven in these cases.

The system can achieve a good level of performance when all
components that affect performance have roughly the same
workload.

The workload placed on the individual system components is
largely determined by the application programs which are
used. This means that a program, which puts an unbalanced
workload on a resource owing to poor organization or pro-
gramming, reduces the performance of the entire system,

For these reasons, it is necessary to think about the orga-
nization before implementing a program and to choose the
BASIC statements very carefully when writing the program.

Page 2 2 Nixdorf 887

$1.87.85 BASIC Program Tuning
Svstem Performance

2.1 Throughput and response time

The system load, that is generated by an application pro-
gram and the way it is distributed, can be determined for
gach individual port by means of the software monitor "SPE"
(System Performance Evaluator) which is stored on the sys-
tem disks.

The resultant profiles reveal that by far the greatest part
of the CPU's performance is consumed by the user (inter-
pretation of the application and arithmetic); for instance
about 50% to 6¢% in interactive applications from the COMET
package. When applications are programmed in a favourable
way for the system, this will have a positive effect on the
response time and throughput of the entire system.

In batch applications, the load on the disk is generally
the critical factor. This does not mean, however, that in-
tricate arithmetic and string processing can be used indis-
criminately in such applications. Every intricate or even
unnecessary BASIC statement is a drain on the system's per-
formance and is detrimental to the entire system.

Hints on system tuning, which consequently involves the
configuration, can be found in the "System Tuning" manual
(order no.: 34697.9¢0.7.23).

S

e
COMPUTER

Nixdorf 887¢ Page 2 - 3

BASIC Program Tuning P1.97.85

System Performance

System load through the BASIC interpreter

The user load that has been determined by means of the
software monitor mainly arises from the interpretation of
BASIC statements, including the arithmetic ($DEC14, $DEC18
or $DEC18H drivers) and CALLs (Discsubs).

In principle, this load can be reduced in two ways:

- Improvement of application programs
- Use of an improved BASIC interpreter

To reduce the load on the CPU, a new interpreter - the
BASIC optimizer using RUNO and RUNC - was released with
NIROS 5.1.

When the optimizer is used without converting the programs
to the generation of fixed wvariable addresses, the user
load is roughly halved. Due to this offloading of the CPU,
system throughput is increased by 2¢% to 3¢9% (measured with
various COMET interactive applications in which only optim-
ized programs were used). Converting the programs to the
generation of fixed wariable addresses achieves a further
gain in throughput of about 5% to 1¢%.

Hints on programming for the BASIC optimizer and on the
conversion of existing programs can be found in the NIROS
5.1 release manual and in the NIROS 5.1 BASIC manual.

x S
COMPUTER

Nixdorf B887¢ Page 3 - 1

BASIC Program Tuning @1.97.85

Hints on Program Structuring

3 Hints on program structuring

This chapter gives some hints on the favourable structure
of program chains and individual program segments.

- All dimensioning should be done with regard to the gen-
eration of fixed variable addresses at the start of the
program and not be preceded by other statements (apart
from REM).

- Statements such as IF ERR and DEF should not be executed
continually (at least not in loops) whenever possible.

- Remarks should be unloaded from the program.

- Function switches should, if peossible, be designed with
the ON statement and not with IF followed by GOTO or
GOSUB.

- In applications which consist of several successive pro-
grams for reasons of space, an attempt should be made to
concentrate the main loop(s) in just one program. Each
program change means that the time slice is passed on to
another user and increaseg the system overhead. Excep-
tional or special functions should be put in programs of
their own in the event of space bottlenecks instead of
spreading main loops over several programs.

- (Control parameters and screen masks that are needed
should be read once at the beginning and then stored in
variables - even with LINKed programs - in order to
avoid repeated accesses to disk.

Page 3 - 2 Nixdorf 887¢

P1.¢07.85 BASIC Program Tuning

Hints on Program Structuring

- In parameter-driven programs, the parameters should be
stored in numeric variables, 1if space allows it, and be
stored or read and tested as a vector instead of a con-
trol string because conditions with a single-indexed
numeric vector are executed faster than with double-
indexed strings.

Not like this:

IF P$(20,2¢0)="1" IF P$(14,14)="¢p" GOTO ...
but like this:

IF P(2¢)=1 IF P(l4)=¢p GOTO ...

- BSimilar arithmetic expressions, which in the end keep
computing the same value, should be avoided in loops.
Programmers should target their style at minimizing
the system load and not at Jjust making the programs
2asy to read. This can be done by computing thase ex-

pressions once before the loop and assigning them to
non-indexed wvariables.

Mot like this:

FOR I=1 TO N

IF A%(B+3,B+3)=X8(1,1I) GOTO ...
IF B$(2*B+1,2*B+1)=¥Y$(I,I) PRINT ...
NEXT I

but like this:

LET T=B+3
LET H=2*B+1
FOR I=1 TO W
IF A8(T,T)=X8(I,I) GOTO ...
TF B&{H,H)=Y$(T,I)} PRINT ...
NEXT I

NIXDORF
COMPUTER

Nixdorf B87¢ Page 3 - 3

BASIC Program Tuning @1.97.85

Hints on Program Structuring

- Whenever possible, the control wariable should not be
indexed in a loop.

Not like this:

FOR H(1)=¢ TO 999
LET A=...+H{1)*...
NEXT H(1l)

but like this:
FOR I=p TO 999

LET A=...+I%...
NEXT I

(If optimized programs which permit the generation of
fixed variable addresses are used, indexing of tables
with constants (e.g. A(19)) is not disadvantageous in

terms of execution time compared with non-indexed var-
iables.)

SRR

N RF
SRR B
COMPUTER

Nixdorf 8870 Page 4 - 1

BASIC Program Tuning ?1.67.85

Execution Times of BASIC Statements

Execution times of BASIC statements

This chapter lists the execution times of individual BASIC
statements and gives hints on programming in order to
improve execution time. The times that are listed refer to
non-optimized programs. The measurements were taken with
the 1537 CPU and the decimal arithmetic driver $DEC14 under
NIROS 5.1.

LET statement

o et o e e e e e e o —————————— L +
: Statement : Framework : Time in ms @
i R S s B o e Fo e —— +
LET A$="123456789p" . PIM A (1) : $.97 - 1.@2
LET AS = BS$. DIM AS(1¢),BS(10) : $.94 - ¢,98 :
: DIM A {1¢¢),B§(1¢¢? 5.2¢0 — 5.5¢
: LET A$(1¢,11¢)=B$: DIM AS$(11¢),BS(1Ppd) : 6.9 - 6.39 :
L S St P S IR +
: LET A = 1T : DIM 1%,I 1I=0 1.38 - 1.43 :
: : DIM 28,1 I=¢ = 1.39 - 1.44 :
: : 1=99999 2.21 - 2.26
: A% =1 USING "#¥E#4" I=99999 : 2,70 - 2.9¢ :
: LET I = A$;. DIM 28,1 A$="12345": 1.35 - 1.4¢ :
: : DIM 4%,1 A$="12345": 1.37 - 1.42 :
s : DIM 2%,1 : 1.59 - 1.64
: : A$="123456789¢":
: LET I = LEN A$: No. of bytes = 5 : 1,19 - 1.24
: : No. of bytes = 1¢¢ 1.99 - 2.19 :
S —— SOV | S %

+
]
I
|
|
|
|
i
|
|
i
|
|
1
|
|
|
|
i
i
i
i
L L LY
I
|
|
|
i
|
1
|
i
i
i
1
L]
I
I
I
|
]
|
I
|
H ap wr e =
|
|
]
I
]
§
]
I
I
I
i
:
i

Page 4 - 2 Nixdorf 8870

®1.¢7.85 BASIC Program Tuning

Exaecution Times of BASIC Statements

The execution time of these assignments is reduced by a
factor of 2 to 2.8 when the BASIC optimizer is used.

In the case of indexed variables, the assignment takes
about .4 ms longer in non-optimized programs than with-
out indexing. (In optimized programs with generation of
fixed wvariable addresses, this only applies when the
index is not a constant because here indexing with con-
stants does not reguire any more time.)

4,2 Arithmetic
Fomm e Fmm e o e e e +
: Btatement : DIM : Values : Time in ms :
e e e e m T e e e e Fom e ———— +
LET A=B+C : 2%,A,B : B=C=9909¢ : 1.44 - 1.49
LET A=B-C : : :+ 1.51 - 1.56
LET A=B*C : 2%,A
: 1%,B,C B=C=999 3.60 - 3.80
2%,A,B,C : B=C=999 1.59 - 3.79
: B=C=999999 4.5¢ - 4.80
: LET A=B*C : 2%,A,B,C : B=999999, (C=99 : 3.1¢ - 3.3¢
: LET A=C*B : : : 4.5¢0 ~ 4.8¢
+ LET A=B/C : 2%,A : B=999, (=2 : 4.80 - 5.00 :
: : 1%,B,C : B=999, C=123 : 6.9¢% - 7.19
& : B=777, C=1234 : 7.00 - 7.28 :
2%,A,B,C : B=999%999, (=99 : 3.5¢ - 3.78 -
: : : B=999999, C=2 s 6.2¢ - 6.50 1
: : : B=999999, C=12345 : 6.4¢ - 6.60 :
- : 4% ,A,B,C : B=99999999999999
: : : C=2 :16.2¢0 -1¢@.4p
: : : C=12345 : 7.¢¢6 - 7.2¢
: : 6.8¢0

C=12345678999 : 6.6¢0 -

TR N A o +

I
NIXDOR | |=
PR

COm F'L.‘TER

Nixdorf B8B79 Page 4 - 3

BASIC Program Tuning ¢1.87.85

Execution Times of BASIC Statements

Hints:

- In arithmetic operations, the operands invelved should
be dimensioned with the same precision whenever possible.

- It is favourable for the execution time of a division if
the dividend and divisor are in the same order of magni-
tude.

- In multiplication, the sequence of operands should be
chosen so that the multiplier has as few significant
positions as possible.

- Multiplication by 2 should be replaced by addition and,
if possible, division by a constant should be replaced
by multiplication by the reciprocal.

Not like this:
LET A=2%*W
LET B=7*(X/v+1/4)
LET c=%/8

but like this:

Eff LET A=W+W
' LET B=(X/Y+.25)*7
LET C=%*%.125

- If space allows; no 1% wvariables should be used because
$DEC has to carry out a conversion to a floating point
variable before every arithmetic operation. When soft-
ware arithmetic is used for addition and subtraction,
for instance, this results in an executicon time which
is longer by up to a factor of 2.

When the BASIC optimizer is used, the execution time for
arithmetic expressions ig reduced by a factor of 1.2 to
2.3, depending on the function and the precision of the
variables.

Page 4 - 4 Nixdorf 8879

@1.97.85 BASIC Program Tuning

Execution Times of BASIC Statements

4.3 Definition of funections
R e e e bt o e e e S N S +
: Statement : Function 1 me :
S M i e P +
: DEF : FNA(C)=C*RB : $.P33

. FNA(C)=C*E/[A*B)+C+SIN((A*C)/180) : @.$33

T

R s S A S A e = SR

The execution time of the DEF statement does not depend on
the length and complexity of the function to be defined as
only an entry is made in a table. The function is actually
executed when it is called in an assignment in the program,
e.g. by LET A = FNA(C). Despite the short execution time,
it should be ensured that the DEF statement is only exe-
cuted once at the start of the program for initialization
purposes.

s e
MIXDDRE
COMPUTER

Nizxdorf 887¢ Page 4 - 5

BASIC Program Tuning @1.¢47.85

Execution Times of BASIC Statements

4.4 Branch and loop statements
e S e S T — +
1 SEtatement : Branch distance 1 Time 1in ms
o e o o e o o b e et e e +
¢ GOTO i : +/- 1 statement : 0.04 - P.¢6
: : +/- B@¢@ statements : $.14 - ¢.16 :
: GOSUB ... : + 80P statements : .16 - ¢.18
: RETURN : - 800 statements : .15 - @.17
= : FOR I=¢ TO 1 : Loop length = : 1.53 - 1.57
: NEXT I : 2¢ statements : P.61 - @P.65 :
. R e B R R O — +

The execution time for a branch statement depends on the
branch destination, i.e. the number of BASIC lines that
have to be skipped. Use of the BASIC cptimizer has no eff-
ect on the execution times of branch statements.

A FOR statement is only executed once for the entire loop.
The executlion time of the FOR statement consists of:

o - Initialization of the control variable

Szdz - Calculation of the end criterion

~ Calculation of the step

- Searching for the associated NEXT statement (in certain
exceptional cases)

The execution time of the NEXT statement consists of:

- BAddition of the step to the control variable
- Compariscon with the end condition

- If necessary, return to the start of the loop (statement
after the FOR statement)

It is advisable to use a non-indexed 2% variable as the
control wvariable.

Page 4 - 6 Nixdorf 887¢

@1 .07.85 BASIC Program Tuning

Execution Times of BASIC Statements

4.5 IF statemant

L e L s e L e e e o i +
Statement : Condition Time in ms

TS e S e O e A S plm LTt DR s e +
IF B ew : TRUE : P45 - @50

: FALSE : B.47 - @.52

IF NOT & ... : TRUE : P.65 - @.69
IF A=Q ... : TRUE : $.96 - 1.09
IF A%(3,3)= " " ... : FALSE : 1.6¢0 - 1,79
IF A$E3,3)= s : TRUE : 1.69 - 1.74
IF A8(3,3)=B$§(23,23) ..., : TRUE : 2.20 - 2.5¢

: IF A ¢ A*B+C-1¢5+C/B ... : TRUE : B.8¢ - 9.B@ :

: IF B%(3,3)="3" : All :

: IF B${3,3)=A%(23,23) : conditions : About 6.0¢

IF A+B=101 ... : TRUE :

T ; ------------- v +
IF ERR @ : : 0.30 - ¢.32

S A ; ————————————— Fomm e +

Hints:

- M“IFA=¢% ..." should, if possible, be replaced by the
FALSE exit of the statement "IF A..." or at least by

"IF WMOT A.x.".

- If complex conditions are specified, the time needed to
calculate the arithmetic expressions has to be added to
the above-mentiocned execution times.

NIXDORF
COMPUTER

Nixdorf 8879 Page 4 - 7

BASIC Program Tuning $1.¢7.85

Execution Times of BASIC Statements

- If several conditions are combined in a BASIC statement,
it should be ensured that the condition that will prob-
ably not be satisfied more frequently is in f£irst place
or, if the frequency is not known, that the conditions
neading less execution time are as far left as possible
in order to minimize the average execution time for the
overall statement. This is because interpretation of the
statement is stopped at the first condition which is not
satisfied and the program is continued at the next
statement.

Not like this:

IF A+B+C+D+E+F=X IF B=P LET Z= LEN AS
but like this:

IF B=P IF A+B+C+D+E+F=X LET Z= LEN A}

- In successive IF statements, the same conditions should
not be tested again and again.

Not like this:

7¢0¢ IF K=4 IF F9»>2 IF F9<5 IF V2<>2 GOSUB 8964
7019 IF K=4 IF FO3>2 IF F9<5 IF V2<>2 GOSUBR 8864

but like this:

T¢@¢ IF K=4 IF F9»>2 IF F9<5 IF V2<>2 GOSUB 99¢¢

99¢ GOSUB B964
991¢@ GOSUEB 8864
992¢ RETURN

Use of the BASIC optimizer reduces the execution time
of IF statements, e.g. the statement "IF A=¢ ..." is
reduced to $.54 - $.59 ms (factor 1.3 = 1.8).

Page 4 8 Nixdorf 8B7¢

@1.¢7.85 BASIC Program Tuning
Execution Times of BASIC Statements

4.6 Input /output statements
Input /output statements signify here the statements used to
process the screen and kevboard.

4.6,1 PRINT statement

An input/output buffer of 254 bytes is created in the cen-
tral unit for each configured port.

The characters to be output and the screen control charac-

ters are stored in the input/output buffer. This buffer is

emptied, i.e. the data is sent to the workstation and dis-

played, when

- the buffer is about 75% full,

- a BIGNAL 3 sztatement follows,

- an INPUT statement follows or

- the program is exited (program end or change due to
CHAIN or LINK).

There are warious BASIC statements to output characters on
the screen, e.qg. PRINT, INPUT, CALL 1 and CALL 4. The most
important of them is certainly the PRINT statement.

With the PRINT statement, the output data is stored in the
buffer. However there 1s a check beforehand as to whether

a preceding output is still active, i.e. whether the buffer
is still in use. If so, there is a change of time slice and
the characters are not output until the next time slice is
allocated.

The time needed to output the contents of the buffer to the
screen is determined by the transmission time (line speed).
In most cases, the speed is set to 96¢@ baud. This results
in a transmission time of about 1 ms per character, i.e.
about 25¢ ms for a completely full buffer.

T
NIXDORE
T
COMPUTER

Nixdorf 887¢ Page 4 - 9

BASIC Program Tuning @1.67.85

Execution Times of BASIC Statements

If the volume of data to be cutput exceeds the buffer size
(e.g. to £fill a whole 2¢@P-character screen), the PRINT
statement is executed in several sections. The buffer would
have to be emptied 8 times in order to output 2048 charac-
ters and there would be a change of time slice after each
section is started. If a lot of workstatlons are active
gsimultaneously on a large system, it can take a long time
until the next time slice 1s allocated again to output the
contents of the next buffer. In this way., the execution
time of such a PRINT statement can be several seconds even
though the transmission could be finished in 2 seconds as
far as the line speed is concerned.

Example: line speed 96¢@ baud, 16 active workstations of the
same priority, time slice 3%® ms. The interval between time
slices for a user can be 16 x 389 ms = 4.8 seconds at most
during normal operations. Consequently, the output of 20¢¢
characters means a maximum waiting time of 8 x 4.8 seconds,
i.e. 38.4 seconds. In practice this figure is not reached

as a time slice i3 generally not used in full in inter-
active applications. One way of improving the response time
here would be to define a shorter time slice (e.g. 10¢ ms).

This example shows, however, that unnecessarily long out-
puts to the screen (e.g. clearing the screen by Dutputtlng
2¢00% blanks) should be avoided.

Page 4 - 1¢ Nixdorf 887¢

B1.07.85 BASIC Program Tuning

Execution Times of BASIC Statements

The execution times given here for the PRINT statement are
just the times for which the interpreter is active and do
not contain transmission time or anv waiting times that may
ocour owing to active outputs or a full output buffer.

R o e o o +
PRINT : Comment Time in ms H
o e e o i S SRR e el Ml e pedea e iaas +
Without parameters : Line feed :
: {like 'CR') : @.5 - @.9
'Cs'; : Clear Screen : $.9 - 1.3

Function is per-
formaed in the DWS

String wariables:

CTRET

B%; : LEN B$=1¢¢ bytes : 11.2 - 11.6
AS; : LEN AS= 1¢ bytes : 1.8 - 2.3
TAB(9,$);:A8; : With tabulation 5 Pl w302
TAR(69,24) :AS8; : : 3.1 - 3.6
: TRB(Q,0);As; : Both in succession:
: TAB(69,24);:A8; : Time per statement: 2.7 - 3.9
1 Numeric variables:
: B : DIM 2%,B : 2,2 - 2.7
: : B=1234560000
: TAB(30,15):R; B 3.2 - 3.5
: TAB(3¢,15);B : Without ";" (i.e. 3.2 - 3.8
: TAB(¢);B : with line feed) 2.6 - 2.9
: TAB(35);B H : 5.7 - 5.9
: TAB(69);:B : : 9.0 - 9.3
: USING "#EREE4F44$4";B; 3.5 - 3.8
1 UBING "+&&&&E&&ELEE" B 4.@ - 4.3
o A L RS S e Fresmems e +

Use of the BASIC optimizer results, for instance, in an
acceleration by factor 1.5 when a 18f-byte string is output.

B S e

Nixdorf 8879 Page 4 - 11

BASIC Program Tuning #1.647.85

Execution Times of BASIC Statements

Hints:

- Blanks are output for tabulation with TAB(X). This is
why the execution time depends on parameter X. With
TAB(X,Y), only the parameters are transferred to the
workstation and the actual functieon is executed locally
in the workstation without outputting blanks. Therefore
it is better to specify the two coordinates (X,Y) for
tabulation.

- When PRINT has partly emptied the input/output buffer

£ and no input/output is due for a while, the applicaticn
i program should issue a SIGNAL 3 after the last output
e instruction for the time being. This utilizes the para-
S iE llelism between line transmission and the application
Lz and it is not necessary to wait for the buffer at the
next input or output. This behaviour is beneficial to a
port's response time and in particular has a positive
effect on the applicaticns' response time on small sys-
tems with few ports and many outputs to screen.

= The screen should never be cleared by means of PRINT and
blanks. Instead, the 'C8' and 'CF' functions should be
used or lines can be overwritten, clearing only the rest
by means of blanks (refer to the execution times for
PRINT 'CS' and PRINT B$).

Examples:

* (Clear the screen with 'CS8' and reconstruct the
header and message lines.

* Work with a display window ('DW'). Then all screen
functions only apply to this window {including 'CS'
for instance).

Page 4 - 12 Nixdorf BB7¢
#1.¢67.85 BASIC Program Tuning

Fxecution Times of BASIC Statements
4.6.2 INPUT statement

The execution time of the INPUT statement is mainly deter-
mined by the following:

- The keyboard operator's walting and input time.
During the input {until 'CR' is pressed), the application
nrogram is deactivated in the central unit. During this
time the CPU serves other ports.

- Utilization of the input/output buffer.
If the input/output buffer still contains ocutput data,
the output is started first and a change of time slice
ig initiated. After the data has been transmitted, the
buffer is free and execution of the INPUT statement is
continued. The same thing applies when an output is
still active.

With the INPUT statement, it is also possible to output
prompting texts on the screen and specify control char-
acters for the workstation, e.g. TAB and 'C8'. After this
output data has been transmitted, i.e. when the buffer is
free again, the system can accept inputs from the keyboard.
Therefore such texts should be sent to the workstation in
good time whenever possible so that the buffer is free for
the INPUT statement.

e

NIXDORF

b T

COMPUTER

Nixdorf 8879 Page 4 - 13
BASIC Program Tuning @1.@47.85

Exacution Times of BASIC Statements

File accesses

File accesses are by far the most time-consuming program
elements (with the exception of some rarely used arithmetic
operations). For this reason, programmers must give great
thought to the file concept before writing programs to make
sure that the load placed on the disk does not seriously
impair the system's performance later. The program should
therefore be designed in such a way as to minimize the num-
ber of file accesses.

Record structures

A data record generally consists of several fields and pro-
grammers should ensure that the sequence of fields in the
data records matches the processing sequence whenever poss-
ible. If the fields are distributed unfavourably, access
will always involve different displacements, resulting in
the necessity for several individual accesses=.

Example:
Not like this:

READ #KE,V1,P5(98);:E(1)

READ #K,V1,P5(98)+2*%P1(98);:E(2)

READ #K,V1,P5(98)+2*P1(98)+4*P2(98);E(3)

READ #K,V1,P5(98)+2*P1(98)+4*P2(98)+6*P3(98);E(4)
but like this:

MAT READ #K,V1,V2;E

Two striking errors were made in this example:

- Firstly, the organization of the data record is so un-
favourable that each variable has to be read with its
ownn READ statement owing to the different displacements.

- Secondly, repeated recalculation of the displacements
puts an unnecessary load on the CPU. At the very least,

identical sub-expressions should not be recalculated
again and again.

Page 4

@1.47.85

14 Nixdorf 887¢

BASIC Program Tuning

Execution Times of BASIC Statements

Record locks

Another major factor affecting run-time is the way in which
racord locks are dealt with.

Care should be taken to avoid record locks whenever possible
as they make other users wait. Record locks should only be
used when a record has to be updated. Particularly with re-
gard to control and parameter files which are accessed from
several applications, reading with record locks has negative
effects on system throughput.

Racord locks should be cancelled as soon as possible.

Refer to section 4.7.5 for more information on this matter.

TER

Nixdorf B87¢ Page 4 - 15

BASIC Program Tuning @1.97.85

| Bxecution Times of BASIC Statements

4.7.3 READ/WRITE statements

The execution time for READ and WRITE statements mainly de-
pends on the number of fields and, when a physical acceass
to disk is required, to a great extent on the access time
for the attached disk drives.

The times shown in the table below include one physical disk

access lasting about 3¢ milliseconds (SMD). The times also
cover the conversion of data from the representation used on

disk to the one used in memory and vice versa.

L L -
Statement : Time in ms @
e — o s +
READ: ; %

: 1 field : 56 - 74 s
12 fields : 78 - 199
WRITE:: : H

1 field : 88 - 187 :

12 fields : 1¢4 - 123 :
s e S fr +

The equivalent execution times in IDC systems are slightly
higher than these figures, especially when several fields
are processed. This is caused by the logical connection in
series of the processors involved (CPU, basic module and
disk interface}. This must not distract attention from the
fact that the IDC does increase performance as a result of
the parallel working of the individual processors.

Page 4 - 16 Nixdorf B87¢

@1.47.85 BASIC Program Tuning

|Execution Times of BASIC Statements
i
1

4.7.4 SEARCH statement

In order to establish the execution time of. the SEARCH
statement, two of the possible functions were examined:

Mode 1 {searching for the lst free data record and
deallocating a data record)
Mode 2 (searching for a specific key in a directory)

STt e R R o —— +
t Mode : Parameters : Time in ms :
Pspramsmsrsron dhom e s caon s sos s s e s ol v ot e +
- 1 : — Bearching for and allocating s 19 - 23
£ : the 1at free record in the file : :
: — Deallocating a record : 26 - 91
2 : Searching for various keys £ !
(existent and non-existent) : :
- Key length = 6 bvtes : 18 - 52 :

- Key length = 19 bytes : 25 - 64
+—————— e e e A . . i o e B —— +

The considerable spread of the execution times is becauss
data blocks are either found in the buffer pool or have to
be read physically from disk.

SEARCH mode 6 (initializaticn of an indexed file) should
only be used in exceptional circumstances if possible. The
execution time of this function depends on the size of the
file and can be very long because all data records and all
directory blocks are written. All other ports on the system
have to wait as this process is non-interruptible.

i e e S
NIXDORF
T
COMPUTER
Nixdorf 887¢ Page 4 - 17

BASIC Program Tuning Pl.p7.85

Execution Times of BASIC Statements

OPEN/CLOSE statements

When a disk file is OPENed, careful thought should be given
to the use of the parameters "L" (file lock) and "R" (feed-
back in the event of a lock).

OPEN with the "L" parameter means that all other users who
want to access the file have to wait. Therefore this para-
meter should only be used where it is absolutely essential.

After an attempt to access a locked record, the system waits
a few hundred milliseconds as standard and then tries again
to access the record in guestion.

OPEN with the "R" parameter causes a status feedback to the
application program in the event of a record lock so that
the latter can react to it.

Under no circumstances, however, should this reaction be
an immediate attempt to access the same record (loop.) as
this would constitute active waiting for the lock to be
cancelled (i.e without passive waiting), resulting in a
heavy load on the CPU which would reduce the performance
of the entire system.

OPEN with the "R" parameter can be used without hesitation
when there is no immediate attempt to repeat the READ or
WRITE statement after a record lock has been detected. The
use of a "standard OPEN" would be preferable in cases where
the statement is repeated immediately.

Page 4 - 18 Nixdorf 8879

$1.47.85 BASIC Program Tuning

Execution Times of BASIC Statements

i S R +

¢ Function and parameter : Time in ms

e e e e e Fom e —————— +
OPEN disk files : 82 - 162
OPEN printer s 7P - 74
CLOSE disk files : 121 - 186

: CLOSE printer : 4 - 57

e o o +

As the figures in the table show, OPEN and CLOSE for disk
files are among the statements with particularly long exe-
cution times., OPEN and CLOSE should therefore be avoided
in frequently executed loops.

In the event of channel bottlenecks, it is better to con-
figure an additional channel. On the other hand, however,
the number of configured channels should be kept as low as
possible. {(This subject is explained in the "System Tuning"
manual; order no. 34697.0¢.7.93.)

e

NIXDORF

b e e
COMPUTER

Nixdorf B887¢ Page 4 - 19

BASIC Program Tuning P1.47.85

Execution Times of BASIC Statements

4.8 CHAIN/LINK statements

The time taken for a change of program via CHAIN and LINK
consists of various phases:

- Interpretation of the CHAIN or LINK statement by the
BASIC interpreter

- Possibly transmission of data from the input/output

buffer to the workstation because the buffer is needed
by CHAIN and LINK for other purposes and is emptied.

373 - loading of the successor program - from disk unless it
5 is in another partiticn.

-iﬁ; - Change of time slice

It - Waiting until the port receives a time slice again
' (dependent on the current number of users in the system)

The following table indicates the pure interpreter execution
time, i.e. the time until the program changes.

e B A i - I — +
R : Stmnt. : Framework : Time in ms :
Sz Fmme e —— o e o = e e o +

; CHAIN : 6.2 - 7.6

: LINK : 1 global variable AS(1¢) : 6.3 - 7.6

: : Many global variables : 21.0 - 39.9

F o b S e o B +

These times are increased substantially if the input/output
buffer is not empty, e.g. with CHAIN they rise to:

* 26 - 25 ms if the buffer contains 1 character
* 27 - 32 ms if the buffer contains 7 characters
* 77 - 82 ms if the buffer contains 5@ characters

Page 4 - 20 Nixdorf 887

$1.07.85

BASIC Program Tuning

Execution Times of BASIC Statements

Now the time for any loading of the successor program and
the time waiting for a new time slice have to be added to
these times.

In the final analysis, a complete CHAIN or LINK can take
several seconds until the entry point in the successor
program is reached in a svyvstem with a heavy workleoad.

When organizing the program, programmers should therefore
make sure that there are ag few program changes as possible
in the normal program flow (without special functions and
error handling).

i e

NIXDODRF

P s e

COMPUTER

Nixdorf 887¢ Page 5 - 1
BASIC Program Tuning #1.647.85

Execution Times of BASIC CALLs

5 Execution times of BASIC CALLs
This chapter describes the execution times of some BASIC
CALLs which are used frequently. The Discsubs involved were
core-resident during the measurement process.

5.1 CALL 1

CALL 1 prepares the screen for an input (function @) and
checks and displays an input in the correct format (func-

tion 1),
5 S S ——— T S A, ¥ o +
i35 CALL 1 : ¥No. of chars.: TAB Dots Time 1in ms @
7 Fm e e ——————— Fom———— Fom e o ——————— +
233 : Fot. @ 1 : 1,1 : Without: 24 - 25
. : 1 : 36,22 : Without: 24 - 25 :
: : : 2! : 36,22 : With s 42 - 43
2 : : 58 + 36,22 : Without: 24 - 25
= 2 : 50 : 36,22 : With : 92 - 93
: Fet, 1 : 1 : 1,1 = : 24 - 25
B it S L e, SIS Sl +

In time-critical interactive applications at least, pro-
grammers should check whether it is necessary to output

dots to mark the input position and number of input pos-
itions.

Bage 5

) Nixdorf B87¢

$1.47.85 BASIC Program Tuning
Execution Times of BASIC CALLs

5.2 CALL 2 and CALL 3
CALL 2 and CALL 3 move data between the user partition and
the common area.
e S L . T —— +
: CALL : Parameters : Time in ms @
. S N e e e S e e +
: 2 1 5 wvariables : :
i : 22 bytes in all 2 3 -8 2
: : 16¢ bytes in all : 3 -8 :
: 3 : 5 wvariables : :
: : 16¢ bytes in all : 3-8
T SRS o s R SR S = +

5.3 CALL 4

The examination covered the CALL 4 functions
the disk archive ID.

e S R R s e SRR e S S +
CALL 4 : Time in ms :

4= e
I
1
|
I
1
1
1
1
1
I
i
i
i
i
]
i
I
I
I
I
|
i
|
1
1
I
1
1
|
+
i
1
1
1
1
i
i
1
i
1
]
i
+

Reading the disk archive ID
Writing the disk archive ID

T
o
[0 B~
[
5
o

o s e
I
1
I
I
1
I
I
I
i
I
I
I
I
I
I
I
i
I
i
I
I
1
I
1
I
1
i
1
I
4l a .
I
1
1
I
1
1
1
1
|
I
I
i
+

for processing

Nixdorf 887¢ Page 5 -

BASIC Program Tuning ?1.97.85

Execution Times of BASIC CALLs

B

CALL 21 and CALL 22

CALL 21 and CALL 22 convert binary numbers as part of a
string into numeric variables and vice versa.

e i i o o i e e s +
CALL : Popsiticon : Value : Time in ms
Fmm———— Fomm e —— e mm——m Fmm e e +

s 21 i 1 1 1.9 - 2.9
. 1 12589 2.4 - 2.1
49 12589 2.5 - 2.8
22 1 - 1 Fomy BT
: 1 : 12589 3.2 = 3.6
49 12589 3.3 - 3.6
fommm—— o o e fmmm———— o e e +
CALL 23

CALL 23 searches for a substring starting at a specified
position in a string.

o ——————— Fom e e o Pt
Length of : Position of: Search fr.: Time in ms
substring : substring : position

R e fmm e ———— TS —— T +

2 55 : 1 v T B
2 : 55 : 56 : 3.2 - 3.4

: 3 : 55 H 1 : 4,9 - 5.1

: 2 : Not found 1 5.6 = 5.8

et e o Fmm o +

These measurements were based on a string length of 8¢
bytes.

Page 5 - 4 Nizxdorf 887¢
@1.07.85 BASIC Program Tuning
Execution Times of BASIC CALLs
5.6 CALL 26
CALL 26 selectively replaces characters in strings. When,
for instance, the character "1" is replaced 8 times by the
character "A" in an B@-byte string, the CALL has an exe-
cution time of 2.4 - 2.8 ms.
5.7 CALL 6@ and CALL 61
CALL 6@ and CALL 61 respectively pack and unpack numeric
data in strings.
S S e i e ——t
: CALL : No. of digits : Time in ms
fmm TR T, - T " P ————— -+
o) 20 : 4
8¢ 12
61 20 ; 3
8¢ : g8
- SR D U N . + ------------ +
5.8 CALL 99

Reading the system date and system time by means of CALL 99
takes 2.4 -2.8 ms.

PRERR e

NIXDOREF

e
COMPUTER

Nixdorf 887¢ Page 6 - 1

BASIC Program Tuning $1.07.85

Hint on Data Communication with Code Conversion

Hint on data communication with code conversion

With regard to data communication wvia the PLC, codes should
be converted by means of a code table in the PLC whenever
possible. Converting codes in the program itself by means
of CALL statements puts a considerakle load on the CPU and

and consequently impairs the system's performance unnecess-
arily.

